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Abstract 

A multislice formula for many-beam calculation of 
dynamical electron diffraction amplitudes which may 
be applied for inclined illumination has been derived 
based on the Schr6dinger equation. This formula 
clearly shows the following points: a specimen should 
be considered as sliced parallel to the entrance surface; 
a spherical propagation function should be used, giving 
the exact excitation error measured along the surface 
normal; the interaction constant in the phase-grating 
function should be changed; the phase grating should 
be projected along the beam direction. A new parameter 
for the strength of the upper-layer interaction in the 
case of the inclined illumination is proposed in terms of 
the excitation error of the reciprocal-lattice points used 
to define the projected potential. It is pointed out that 
the potential projected along the beam direction may 
better represent the upper-layer interactions for the 
inclined illumination. 

I. Introduction 

The multislice formula derived by Cowley & Moodie 
(1957) included small inclination of illumination assum- 
ing a specimen of the orthogonal system. This formula 
was developed to include small tilts such as those 
occurring in the case of convergent-beam experiments 
(Lynch, 1971; Goodman & Moodie, 1974). There the 
effect of the tilt appeared only in the propagation 
function through an excitation error. Self (1979)made 
extensive investigations on the effect of specimen tilt 
intuitively and gave expressions different from the 
present results. In the matrix method it is easy to derive 
an equation taking into account the tilt theoretically 
(e.g. van Dyck, 1976), but this has problems for 
practical calculation in many-beam cases compared 
with the multislice method (van Dyck, 1979). 

Normal convergent-beam patterns have been 
successfully interpreted using the usual multislice 
formula for small-unit-cell crystals composed of light 
atoms (Goodman & Lehmpfuhl, 1968) and of heavy 
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atoms (Lynch, 1971). However, asymmetries of dif- 
fraction intensity have been observed in tilted 
convergent-beam patterns (Goodman, 1974; Buxton, 
Eades, Steeds & Rackham, 1976), and this effect has 
not been thoroughly investigated (Steeds, 1979). Some 
experiments with intentional large tilt angles have been 
done in order to determine the polarity of noncentro- 
symmetric crystals (Tafto, 1981; Tafto & Spence, 
1982). Although these reports presented a simple 
method of understanding the diffraction intensities, 
detailed analysis should be carried out based on n-beam 
dynamical theory. 

Upper-layer interactions (out-of-zone effects) are 
considered by Lynch (1971) and Goodman & Moodie 
(1974). They showed that the upper-layer interactions 
will introduce serious errors in the multislice calculation 
when the slice thickness multiplied by the excitation 
error becomes large. 

In this paper, a multislice formula which may be 
applied to the inclined illumination is derived based on 
the Schr6dinger equation, extending the previous paper 
of Ishizuka & Uyeda (1977). Some necessary changes 
from the usual formula for normal incidence are 
discussed. A parameter for the strength of upper-layer 
interactions, different from that of Goodman & Moodie 
(1974), is proposed. Some calculations in progress in 
order to test the present theory will be published 
separately. 

II. Derivation of the formula 

The solution of the Schr6dinger equation written in 
C artesian coordinates, 

(V 2 + k 2) q/(r) = (2rn/h 2) V(r) ~(r), (1) 

is given in the following integral form 

2m f exp i { k l r -  r'l - k ( r -  r')} 
cp(r) : 1 47zh 2 J I r -  r'l 

× V(r') ~p(r') dr', (2) 

after the substitution: ~,(r) = exp(ikr) ~p(r). Here k = 
I kl, k(kx,ky,kz) is the wave vector of the incidcnt 
electrons, V(r) is the potential energy (Ishizuka & 
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Uyeda ,  1977). If  the propagat ion  function p(r)  is 
defined as 

1 1 
p(r)  = - -  exp it k r -  kr }, (3) 

2i r 

where r = I r I, then (2) is rewritten 

i 
~o(r) = 1 - - -  

hv 
.1 p ( r  - r ' )  V (r ' )  ~p(r') dr ' .  (4) 

Here the relationship 2m/4nh  2 = (i /hv)(1/2i)  is used, 
where v and 2 are the velocity and wavelength of the 
incident electrons respectively. This propagat ion func- 
tion has the following properties:  

q~(b,z) = (kz /k )J  cP(bo, zo)P(b -- b o, z -- z0) db o 

+ --~vt' V (b ' , z ' )  (0(b ' ,z ' )  

× p ( b -  b',  z - z ' )  db'  dz' .  (6) 

This integral equation is solved by expanding ~o(b,z) in 
an infinite series: 

~0(b,z)= Z - f , ( b , z ) .  (7) 
rt=0 

The substitution of  (7) into (6) results in the following 
set of  equations:  

J p(b,z)  db = k/kz, 

where r = (b,z), and 

(Sa) 

p(b2 - bl, z2 -- zl)  ~-- ( k z / k ) f p ( b  - b, ,  z - Zl) 
Z 

x p (b  2 - b, z 2 - z) db. (5b) 

Here the plane of  integration £' is arbitrarily located 
between the points zl and z 2. These relationships can 
easily be proved using the Fourier  t ransform of the 
propagat ion  function (Appendix).  

When the integral in (4) is divided into two regions, 
V l and V,, (see Fig. 1), (4) will be modified using (5a) 
and (5b) within the forward  scattering approximat ion 
(Ishizuka & Uyeda ,  1977): 

k 

• r"(b'~ z") 

s u r f a c e  

Zo ro( bo, Zo) / 
z'[. r'Ib'z', / ] 

s l i c e  V,, - [ - - ' ~ - / / r ~ b ' s . Z '  , 

r ib .z )  

Z 

Fig. 1. A division of an integration in the integral form of the 
Schr6dinger equation appropriate for the forward scattering 
approximation. The region V I shows a part of specimen 
preceding the region V. which forms a slice. Here a wave 
function at the bottom surface of the slice V~ is considered. The 
incident surface is normal to the z direction, and the system is 
described by Cartesian coordinates. 

f n ( b , z ) =  f f V ( b ' , z ' ) f n _ , ( b ' , z ' ) p ( b -  b ' , z -  z ' )  
VII 

× d b '  dz ' ,  (8a) 

for n _> 1, and 

fo(b,z) = (kz/k) f ~o(bo,z o) p (b  - b o, z - Zo) db o. (8b) 

If  the potential varies slowly in the region of  order { I r - 
rol/k} ,/2, then f l  becomes 

f l ( b , z )  = f dbo ¢(bo,zo)(kz/k)  

x f f dz '  db'  V ( b ' , z ' ) p ( b '  - b o, z'  - Zo) 
VII 

x p(b  - b ' ,  z - z ' )  

f f V(b's,z') (o(bo, zo) p ( b  - b o, z --Zo) 
Vii 

× dz 'dbo,  (9) 

where b '  s = [(z '  - zo)b + (z - z ' ) bo] / ( z  - Zo). Here  
the small-angle-scattering approximat ion is assumed and 
the method of  s tat ionary phase is applied (Appendix).  
The integral on the potential energy V over z'  in (9) 
should be done on the s ta t ionary points b'  s which are 
located on the line r - r o approximate ly  parallel to the 
incident-beam direction for the small-angle approxi- 
mation. When the potential change with b is neglected 
in the region of  I r - rola where ~ is the max imum 
scattering angle, the integral over z'  can be carried out 
along the direction of  the incident electrons [see (15)], 
specified by the variable z k, and (9) finally becomes 

f l ( b , z )  = ( k J k ) f  [ ( k / k z ) f  V (bo,Zk) dzk] 

x ~o(bo, zo)P(b  - b  o, Z-Zo) db 0. (10) 

With the successive application of  the s ta t ionary-phase  
method using the mathemat ica l  induction ( Ishizuka & 
Uyeda ,  1977) f ,  finally reduces to 

1 
f . ( b , z )  = ( k J k )  f -n-(. [(k/ks) "(V(b°'zk)  dzkln 

x ~O(bo,zo)P(b - b o, z - Zo) dbo, (11) 
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The substitution of (8b) and (11) into (7) and the 
summation over n give q~ as 

~o(b,z) = (k~/k) f exp - - - - -  I V(bo, zk) dzk 
• h v  k ~  " 

× ~P(b0,z0) p(b - b 0, z - z  o) db 0. (12) 

which is simply rewritten with z, = z 0 and z,+~ = z, 
using the convolution integral 

~o,,+~(b)= [~o,,(b)q,,(b)l.[(kffk)p,,(b)]. (12a) 

Here ~o.(b) = ~o(b,z.) and q.(b) defines the phase 
grating: 

f V(b,  zk) dz k . (13) q,,(b) = exp h-v k~ ~. 

So far an orthogonal system with the z axis 
perpendicular to the crystal surface has been assumed. 
When the c axis of the crystal coordinates is not 
perependicular to the surface as in the case of 
non-orthogonal systems (Fig. 2), the b coordinates of 

n J a-b plane 

qn 

q°*' ~ 

Fig. 2. The relationship of successive slices showing a shift of 
origins in the Cartesian coordinates. After an appropriate 
transformation, the x - y  plane and z direction of the Cartesian 
coordinates are regarded as the a - b  (real) plane and c* 
(reciprocal) direction of crystal coordinates respectively. Then 
the shift of the origins denoted by b o can be simply related in the 
crystal coordinates. 

kz 

Lo 

Fig. 3. A relationship of reciprocal-space vectors. The u plane is 
conjugate to the incident surface, i.e. the x - y  plane, k, and k z are 
components of k, which are parallel and perpendicular to the 
incident surface respectively. L and L 0 are centers of Ewald 
sphere and Laue circle respectively. 

origins of the phase gratings lying on the c axis will shift 
parallel to the surface. The wave function at the bottom 
of the nth slice will satisfy (12). The origin of ~Pn + 1 must 
coincide with that of the next phase grating q, + 1 during 
the next iteration. If this shift of origin is denoted by b 0 
(Fig. 2), then (12a) becomes 

~pn+~(b- b0)= [~p,,(b)q, ,(b)l , l(kJk)pn(b)l .  (14) 

The Fourier transform of this equation becomes 

q~+ ~(u) = [q~,,(u),Q,,(u)][(kJk)P,,(u) exp(27riub0)], 
(14a) 

where capital letters represent the corresponding 
Fourier pairs, and u defines the reciprocal-lattice plane 
conjugate to the b plane (Fig. 3). 

III. Discussion 

The new derived formula points out three changes from 
the usual multislice formula for the normal incidence of 
electrons as follows. 

(1) The interaction constant a = 1/hv should be 
changed to o' = (k/kz)a.  The same modified interaction 
constant has been used by Anstis & Cockayne (1979), 
and can be expressed in terms of the wave number as 
m/hZk~, which shows that the specimen feels  not the 
whole wave number k but only its component k~. This 
result is in accord with the boundary conditions on the 
entrance surface, which leave the wave component kt~ 
parallel to the surface unchanged. 

(2) The direction of integration for calculation of the 
phase grating should be along the incident direction of 
the electrons. Since it may not be necessary to divide 
the atomic potential into two slices (Goodman & 
Moodie, 1974) the projected potential of one slice will 
be calculated from the atoms whose centers belong to 
that slice. Hence a modified Fourier theorem of 
projection can be applied as follows: 

Z n ,  I 

V.(b) = J V(b,z,) dz, 
7.n 

0 o  

~_ .[ V ' ( x  + zkx /k  ~, y + zky/kz, z) dz 

oO 

= [ fF ' (g)exp{2rci[gx(X + zkx / k  z) 
- - 0 0  

+ gyO' + zky/kz)  +gz z]} dg dz 

= .[ F' (u, -- ukf fkz)exp (2zriub) du. 
(15) 

Here k,, = (kx, ky) and u = g,, = (gx, gy). V' (r) represents 
the potential distribution due to the atomic potentials, 
and F ' (g)  its Fourier transform. The function V' may 
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extend out of the slice and the integration should be 
carried out over (-oo, oo). Equation (15) shows that the 
projected potential should be calculated from the 
Fourier transform F ' (g)  for the value of g located on 
the plane perpendicular to the incident direction of the 
electrons: (u,-uk, /k~).  (k,,,kz) = 0. In the case of 
periodic objects the integral in (15) becomes a 
summation over discrete points on the u plane. It will 
be noted that the reciprocal points (u , -uk , / k z )  defining 
the projected potential do not coincide with the 
reciprocal-lattice points of the crystal except in the case 
of zone-axis orientation. 

(3) The propagation function based on the spherical 
wave should be modified as follows: 

p ' (b )  = (kz/k) p , (b  + bo). 

and 

P" (u) = (kz/k) P,, (u) exp(2zriubo), 

in the real and reciprocal spaces respectively. The 
factor kz /k  guarantees the normalization as 

. lp ' (b)  db = P ' (0 )  = I. (5a ')  

The entrance surface ( x - y  plane) may be regarded as a 
crystal plane (001), and the z direction may coincide 
with the reciprocal-lattice vector e*, since the crystal 
axes can be transformed if necessary (Fig. 2). Hence 
ub 0 will be expressed as 

ub o = g¢,, b o = - A z ( g ~  - c* Q. 

Here we used the following relationships: 

u = g~,, = (g~x,g~y), 

b 0 = Azn + Azc*e 

(see Fig. 2), and 

g~ = Ca* + r/b* + ~e*= (g~x,g~y,g~z) 

(see Fig. 4). The modified propagation function in the 
reciprocal space is written for the reflection g~ explicitly 
as (Appendix § 1): 

P'(g~) = kz/[k 2 - (k,, + 2zrg~,,) 2 ] 1/2 exp {-2rciAzS(g()}.  

(16) 
Here 

S(g~) = {k~ + 2 r r ( g ~ -  c*O 

- [ k - ' -  (k,, + 2zrg;,,)-'l~'-'}/2zr, (17) 

which expresses the excitation error for each reflection. 
It should be noted that S(g~) is determined only by g¢,, 
equal to u. The excitation error evaluated at go on the 
a* - b* plane is exactly equal to the distance from the 
reciprocal-lattice point to the Ewald sphere measured 
along the surface normal. In the multislice formulation 
all possible reflections g will be represented at g, in the u 
plane, which defines the reciprocal-lattice plane conju- 
gate to the surface. The exact expression for the 
excitation error (17) can be approximated by 

1 k 2 -  (k + 2zrg0)-' 
S (g) ~_ - -  (18a) 

2zr 2(k + 2zrgo) ~ 

1 k 2 -  (k + 2rCgo) 2 
(18b) 

2n 2k. 

Here go is used to represent the reflection at u, so that 
= 0. It is noted that the slice thickness in (16) is 

measured along the z direction. If the slice thickness 
Az k measured along the beam direction is used in (16) 
instead of Az, kz in (18b) will be replaced by k. 

The upper limit of the slice thickness will be 
estimated from the above derivation of the multislice 
formula as follows. The potential distribution should 
change slowly over the region (AT-k /k)  1/2 (A9) o r  Az k (1 
(10). If d defines the distance over which the potential 
does not change appreciably, these two conditions give 
the same order of the upper limit for the slice thickness 
A z  k o r  Az as 

Az k < kd2/n or Az < k: d2/n, (19) 

where a well-known relationship, ~t ~_ 2n/kd, is used. 
The maximum inclination angle of the incident 

electrons will be limited as follows. It is obvious that 
this formula cannot be applied to the glancing incidence 
of electrons. Here the forward scattered electrons will 
go back into the former slices, but that possibility is 
neglected in (6). Another limitation on the inclination 
angle is imposed by the approximation (A 5) which has 
been used in (6), (9) and (11) through the relation (5b). 
The approximation is reduced to 

[k~ - (4rrk, g + 4zr-" g~)l' -' -~ k:, 

so that 

2 zrg/k ~ cos 2 fl/sin fl 

k 

n 

Fig. 4. A diagram showing an excitation error defined by the 
reciprocal-space propagation function. The excitation error 
should be measured along the surface normal. If the crystal 
transformation is assumed as in Fig. 2. a simple expression for the 
excitation error is obtained. Here go = g~ - and these points give 
the same excitation error. 
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where fl is the inclination angle. This inequality will 
hold more satisfactorily for electrons accelerated by 
higher voltages. However, the limitation of the incli- 
nation angle may be relaxed appreciably for all 
voltages, because (5b) has been obtained with the 
stationary-phase method in the Fourier transform of 
(A 5) (Appendix). 

It is worthwhile to consider upper-layer interactions 
for inclined illumination. Here the upper-layer inter- 
actions are defined in real space as a multiple scattering 
of electrons by atoms in the unit cell. In other words, 
the upper-layer interactions mean the breakdown of the 
projection approximation for the phase grating. 
Therefore, in the multislice calculations, the upper-layer 
interactions will be introduced when the unit cell is 
divided into more than one slice to make better phase 
gratings. In order to get the appropriate phase gratings 
two points should be considered: the slice thickness and 
the projection direction. The upper-layer reflections are 
usually included in the multislice calculation, provided 
a sufficient number of beams is taken into account. 
However the calculated reflections will not show 
correct scattering amplitudes if the slice thickness is not 
suffÉciently small. Goodman & Moodie (1974)showed 
that 'false' upper-layer reflections will be generated 
when the slice thickness multiplied by the excitation 

n 
o l  j~ • • • 

C* 
(a) 

(b) 
Fig. 5. Two definitions of excitation errors. An excitation error 

S(g) measured along the surface normal controls the excitation 
of reflection. The other excitation error Sk(g) measured along the 
beam direction defines the strength of an 'upper-layer' interac- 
tion. (a) and (b) show these two excitation errors in the case of an 
orthogonal and a non-orthogonal system respectively. The 
lengths of the dotted lines show S(g), whereas the lengths of the 
solid lines show Sk(g). The maximum value of Sk(g) within any 
resolution limit is smaller than that of S(g). 

error, corresponding to (18b), becomes more than one. 
If the slice thickness is made sufficiently small, the 
phase gratings made from the potential projected along 
any direction, e.g. the zone axis, will introduce the 
correct upper-layer interactions. 

However, the upper-layer interactions can be better 
taken into account in the small-angle scattering 
approximation, if the potential is projected along the 
incident beam direction, i.e. the principal scattering 
direction. Here the projected potential is calculated 
from the structure factors on the plane perpendicular to 
the incident beam. A parameter for the strength of the 
upper-layer interaction will be defined in terms of the 
excitation error of the reciprocal points used to define 
the projected potential. This excitation error may be 
measured along the projection direction, i.e. the beam 
direction, and expressed as 

Sk(g) = { k -  [k 2 -  (27rg)21"2 }/2rc, 

where g is the reciprocal point defining the projected 
potential. The parameter of the 'pseudo' upper-layer 
interaction due to a finite slice thickness is defined by 
this excitation error multiplied by the slice thickness 
A z  k as 

/Ig k Sk(g) ~" 7rAT. k g2 / k .  

The upper limit of the slice thickness given by (19) 
limits this parameter to one. This means the slice 
thickness given by (19) may guarantee the 'correct' 
upper-layer interactions. It can be seen from Fig. 5 that 
the maximum value of Sk(g) within any resolution limit 
is smaller than that of S(g), so that the pseudo 
upper-layer interactions due to a finite slice thickness 
are small when the potential is projected along the 
beam direction. Some reflections of small excitation 
error S(g) may have large upper-layer interactions 
Sk(g) in the case of tilted illumination. However, in the 
normal illuminated zone-axis orientation, two ex- 
citations, S(g) and Sk(g), become identical. 

The modified multislice formula may be used for 
wedge crystals (Goodman & Moodie, 1974) except at 
the edge of the wedge. Here the wedge will be sliced 
parallel to the entrance surface for the electrons, and 
the outgoing wave, i.e. the wave function at the exit 
surface, will be expressed by the summation of the 
wave functions for each specimen thickness. 

Some calculations are in progress to test the present 
theory for tilted-convergent-beam patterns and electron 
diffraction from non-orthogonal systems, and will be 
published elsewhere. They will include examinations of 
some approximations for the excitation error and of the 
upper-layer interactions. 

IV. Conclusion 

A multislice formula which may be used for illumi- 
nation inclined to the entrance-surface normal of a 
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crystal has been derived, based on the integral form of 
the Schr6dinger equation. This formula shows the 
changes which are necessary to the propagation and 
phase-grating functions relative to the usual formula for 
normal incidence. The generalized propagation func- 
tion for the spherical wave gives the exact excitation 
error measured along the surface normal. The phase 
grating parallel to the incidence surface should be 
calculated with a modified interaction constant and the 
potential projected along the direction of the incident 
electrons. 

For the inclined incidence of electrons, the upper- 
layer interactions will give serious errors when the 
excitation errors measured along the beam direction 
multiplied by the slice thickness are large. The 
maximum slice thickness imposed by the approxi- 
mations during the derivation of the multislice formula 
guarantees the correct upper-layer interactions. 

The author would like to thank Professor J. M. 
Cowley for many helpful discussions throughout this 
work. The work was supported by the NSF Regional 
Instrumentation Facilities Program (Grant CHE- 
7916098). 

A P P E N D I X  

1. Fourier transform of  the propagation function p(r) 

We consider the 2D Fourier transform ofp(b,z) on the 
b plane, 

• 1 1 
I P(u) - exp i { k r  - kr} exp(-27tiub) db(A 1) 
1 ~/" r 

1 I" exp i k ( b  2 + z2) ~'-' 
e x p ( - i k z z )  I 2i . (b 2 + zZ) I'-' 

where k,, = ( k x , k y )  and u is a vector on 2D reciprocal 
space. This Fourier transform can be carried out 
successively over x and y, and results in 

P(u) = { k / [ k  2 - (k, + 2zru)21~;2t 

x e x p ( - i z t k ~  - l k  2 - (E, + 27ru)2]m}), (A2) 

which propagates as an evanescent wave when I k, + 
2rrul > k. The Fourier pair used in the first transform 
(say for x) is as follows: 

e x p l i b ( x  2 + a2)U2l/(x2 + a 2) 

( ircHCo ~) {a[b 2 _ (2zr~2 ]~/2} 
for b > 12rc~l, 

( = )  |2Ko{al(27rO2 _ b2l ';2 } 
\ for b < 12zr~l, 

and in the second transform (say for y): 

e x p l i b ( a  2 - x 2 ) ~ n l / ( a  2 _ x2)1,2 

( = )  z~H(o"{al(27r~ 2 + b21 ~'2} 

and 

exp i -b (x  2 + a2) l / 2 ] / ( x2  + a 2) 

( = )  2K0{al(2rr~) 2 + b21"2}. 

Here x and ~ are conjugate variables and ( = )  shows a 
Fourier pair. H(o I~ = Jo + iNo. HI)'~, K0, J0 and N O are 
the zeroth-order first-kind Hankel function, second- 
kind modified Bessel function, Bessel function and 
Neumann function respectively. 

2. Some properties of  the spherical propagation 
function (3) 

The normalization is given by 

.fp(b,z) db = P(0) = k / k  z. (A3) 

The next equation is readily shown using (A2) as 
follows: 

k 
P(u, z -- zl)P(u, z 2 -- z) = 

lk 2 -  (k,, + 2nu)21'/2 

x P(u, z 2 - z~), (A4) 

which can be approximated for small-angle scattering 
as  

P(u, z -  z0P(u ,  z 2 -  z ) ~ -  ( k / k z ) P ( u ,  z 2 - zl). 
(A5) 

The Fourier transform of this equation provides (5b) 
using the convolution theorem: 

p(b, z - zl) .p(b,  z 2 - z )  ~- ( k / k z ) p ( b ,  z2 - Zl) .  
(A6) 

This approximation can be justified with the stationary- 
phase method applied to the Fourier transform of the 
r.h.s, of (A4). Here a stationary point appears at 

k,, + 2 n u  s = [ k / ( b  2 + z2)'/2]b, 

so that the factor on the r.h.s, of (A4) becomes 

k / [ k  2 - (k,, + 2nUs)21 '/2 = (b 2 + z 2 ) ' n / z  ~_ k / k z ,  

and the Fourier transform of (A 4) results in (A 6). 

3. Derivation of  equation (9) 

From the definition of the propagation function (3), 

1 1 1 
p(r'  - r o ) p ( r -  r ') - - -  

(2i)  2 I r ' - -  r01 Ir-- r 'l 

x exp{--ik(r-- ro) } 

x exp i k l l r ' - ~ r o l J  + I t -  r 'l }. 
(A7) 
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The last term is a function of  b' ,  which has a s ta t ionary  
point at 

b' s : [ ( z ' -  zo)b + ( z -  z')bol/(z - Zo). 

In the small-angle-scattering approximat ion  it is 
sufficient to consider the directions of  r' - r 0 and r - r' 
close to the incident direction of  electrons, that  is, the 
region of b' close to b s. Then the distance I r '  - r01 + 
I r -  r '  I will be approximated  as 

Ir' - -  rol + I r - -  r'l  ~ Ir' s -  rol + I r - -  r'l  

+ + ~  
, _ r 0 1  I r s 

X (b' , 2 - b ~ ) ,  

I r -  r'sl 

where r s' = (b's,Z'). Since Ir's - rol + I r -  r'sl : I r -  rol, 
(A 7) becomes 

I 1 I 
p( r '  -- r 0 ) P ( r -  r ' )  _ - -  

(~ i )2  ]r' - -  rol ] r - -  r' I 

X exp i { k l r -  rol - k ( r -  ro)/ 

i [ L  I r -  rol 
+ exp 

t 2  Ir'~ - -  rol I r -  r'sl 

( b ' -  b's)~}. (A8) X 

When the potential distribution does not change 
appreciably over a distance of  { I t -  rol/2k} '/2, which 
gives the upper limit of 

{~ ' -  r'l . 2  Ir s r o l l r -  

I r -  rol 

through a relationship between geometric and arith- 
metic means,  the integration over b' in (9) can be 
carried out using the method of  s ta t ionary  phase 
(Eckar t ,  1948): 

(kz/k) .1 V ( b ' , z ' ) p ( b ' -  b o, z'  - z o) 

× p ( b  -- b' ,  z - z ' )  db'  

~- (kJk)  V(b ' , z ' )  .f p (b '  - b o, z'  - Zo) 

× p (b  - b ' ,  z - z ' )  db '  

~_ V(b's,z')p(b - b o, z - Zo), (A9) 

where (A6) has been used to derive the last equation.  
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